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Below we will study the effect of rapid vibration on development of convection in a 
porous medium. The problem of filtration convection was first considered in [i]. A review 
of subsequent studies can be found in [2-4]. The action of high frequency vibration on con- 
vection development in a liquid (0berbeck-Boussinesq equation) was first studied in [5], 
where a closed dynamic system was derived for the average thermohydrodynamic field and the 
stabilizing effect of vertical oscillations was established. An exact mathematical justifi- 
cation of the averaging method for the problem of convection within a field of rapidly oscil- 
lating forces was given in [6]. 

In [7] the effects of high frequency vibration were confirmed experimentally in a study 
of convection in a homogeneous medium. It is hoped that the present study of convection in 
a homogeneous medium. It is hoped that the present study will also offer grounds for exper- 
iment. 

Below we will derive averaged equations of filtration convection for an arbitrary re- 
gion. Analysis of the stability of relative equilibrium was performed for a planar horizon- 
tal layer on the rigid boundaries of which a constant temperature is maintained. An inter- 
esting feature of the linearized system is the fact that as a rule it lacks coefficients 
which vary vertically. A system with constant coefficients is obtained only for vertical 
oscillations or for the condition b = m (b = (pC~)m/(pCp)~, the ratio of the specific heats; 
m, porosity). For these cases it has been proved that convection development is produced by 
monotonic disturbances (the monotonicity principle)~ The effect of vertical oscillations 
has been studied in detail. It has been found that as for a homogeneous liquid, sufficient- 
ly intense vibration completely suppresses convection (absolute stabilization). 

I. Formulation of the Problem. The vessel containing the porous medium saturated by 
a viscous incompressible liquid performs harmonic oscillations along a specified 'direction 
s ~ (cos ~0, sin q~) following a law a/~cos ~t. The temperature distribution is specified on 
the boundary, which is assumed rigid, impermeable, and ideally thermally conductive. We 
will make use of the filtration convection equations in the Oberbeck-Boussinesq approxima- 
tion obtained in [8]. Transforming therein to a moving coordinate system fixed to the ves- 
sel we obtain 

( ) "~1 -$/- + T ~ - f ~ ' ~  1 (u, V) u ~ -- --pg + g~Ty -- -K- u + w~j3r, d i v  u :-- O, 

(1.t) aT 
(pcp)cp - - ~  : x m J~T - -  (per) 9~ (u,  VT) ,  

we = - - a f2  cos f2ts, s = (cos % s in  qg), 

where u is the relative filtration velocity, T is temperature, p is the convective pressure, 9 is 
the density,g is the acceleration of gravity, 7 is a unit vector directed vertically upward, m is 
the porosity coefficient, K is the permeability, v, ~, < are kinematic viscosity, volume expan- 
sion, and thermal conductivity coefficients, Cp is the specific heat (subscripts s and m 
denote the liquid and porous medium, respectively), a is the vibration rate, fl is the fre- 
quency, ~ is the angle at which the vibration is directed relative to the horizontal plane, 
such that ~ = 0 corresponds to horizontal oscillations and ~ = ~/2, to vertical. 

We note that the transition in the filtration convection equations to the moving coor- 
dinate system is performed just as in the case of convection in a homogeneous medium [5], 
the only difference being replacement of the Newtonian viscosity by Darcy viscosity. 
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In system (i.I) we transform to dimensionless variables choosing the following units 
of measurement: length s time s velocity v/E, temperature At, pressure ps ob- 
taining 

c-g/--+-~-(u,OU c V) u = - - V p + ~  7 G r T - - u - - G ( c o s ~ t ) s T ,  d i v u = O ,  
( 1 . 2 )  

OT t b - d = ~ a T - - ( u ,  VT ) 

(the dimensionless unknowns are denoted by the same letters as the dimensional ones). Sys- 
tem (1.2) contains the dimensionless parameters: c = K/(s the ratio of dimensionless 
permeability and porosity; Pr = v/X, the Prandtl number [X = Km/(PCD)s is the thermal dif- 
fusivity of the medium]; Gr = (gABs 2, the Grashof number; G = ~a~$As 2, the vibra- 
tion parameter; ~ = ~s the dimensionless frequency; b = (pCp)m/(pCp)i, the specific 
heat ratio. On the boundary S the normal component of heat filtration rate vanishes and 
the temperature i~ specified: 

u~ = 0 ,  T = T O . (1.3) 

The initial conditions for system (1.2) consist of specification at t = 0 of the veloc- 
ity u and temperature T. We will now consider the high frequency asymptote (~ § =) of an 
arbitrary solution for the usual assumptions of the averaging method. 

2. ........ Derivation of Averaged Equation s. We will consider vibration of high frequency 
and low amplitude (~ + =), assuming that the modulation rate remains finite. We apply the 
averaging method in Kapitsa's form to system (1.2), (1.3) as was done in [5, 9] for a homog- 
eneous liquid. We will seek the unknowns u, T, p in the form 

where 
time: 

u = v + ~ ,  T = ' ~ + r l ,  p - = q  ,-66,  ( 2 . 1 )  

v, ~, q are slow components and ~, q, ~ are rapid ones, having a zero average over 

% 

d i v w  = 0, ~ - -  

c ( s in  o~t)w, w = l'I (s'O, 
t.OC 

G (cos cot) (w, V'O, zv,, is = O. 
o2cb 

( 2 . 2 )  

Here the operator ~ is an orthoprojeetor in L 2 in the subspace of solenoidal vectors with a 
normal component equal to zero on the boundary. In other words, w = st--?(D, the function 

is a solution of the Neiman problem: 

Aqb = (V z, s), OCb/Onls = ( s t ,  n) ( 2 . 3 )  

~ i s  a u n i t  v e c t o r  i n  t h e  d i r e c t i o n  o f  t h e  e x t e r n a l  n o r m a l ) .  E q u a t i o n s  ( 2 . 2 ) ,  ( 2 . 3 )  e x -  
p r e s s  the rapid components ~, ~ in terms of the slow temperature component ~. They can be 
obtained in a natural manner by substituting Eq. (2.1) in the original Eqs. (1.2) and sepa- 
rating the main vibration terms. Substituting Eq. (2.1) in Eqs. (1.2) and (1.3) and aver- 
aging over the explicitly appearing time, we obtain a closed dynamic system for the average 
thermohydrodynamic field : 

c - g f  + - & - 

�9 0 r  t (2,4) 
b 7 = ~-T A~ -- (v, V'O, div  w - -  O, 

Aw = - - r o t  rot  (sz), v,~ = w~ = 0, z = To on S.  

Time does not appear explicitly in Eq. (2.4), but additional terms have appeared with the 
coefficient Gv = a2~2A2s the vibration Grashof number for the porous medium. 

3. Mechanical Equilibrium. It follows from system (2.4) that an average filtration 
flow is absent (v 0 = 0) if the specified region, heating conditions and vibration direction 
are such that the equations 

[ )] GrVT-o>< V + G v r o t  (wo, V ) T S ~ o - - w o  ~ 0 ,  ( 3 . 1 )  

AT o : 0, r o t w  o = ?To • s, d ivwo  = 0 ,  wo~ : 0, % = To o n S  

are satisfied. 
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The conditions of Eq. (3.1) are necessary for existence of mechanical equilibrium, and 
are sufficient for a single bond region. For a homogeneous liquid Eq. (3.1) has not been 
solved in the general case; in [i0, ii] some equilibrium configurations for weightlessness 
(Gr = O) were considered. We will not study the problem of Eq. (3.1) further, noting only 
that if 7~01[s, then w 0 = 0 and it follows from Eq. (3.1) that 7~011~ and z 0 = -Cy + D. 

4. Stability of Mechanical Equilibrium. We will now study development of convection 
in a planar horizontal layer (IyI <- s on the boundary of which temperatures T l and T a are 
specified such that the temperature gradient A = (T I - T2)/s The problem of Eq. (2.3) then 
has the following equilibrium solution: 

v o = 0, "c o = - - g  + B,  qo = Or( - -Y ~,/2 + By) + const ,  

Wo~ = - - ( cos  q~)g, Wou = 0, B = (T1 + T~)/(2(T 1 - -  T2)). 

For small perturbations we write the linearized system in the form 

c ot 

b OT _ t AT - -  (u, V~o) d i v w = 0 ,  
ot Pr 

Aw = - - r o t r o t  (sT), uv = w u  =- T = 0  for  g = : t : i / 2 .  

In the general case system (4.1) contains the variable coefficient W0x(y). 
tions that quantity reduces to the form 

OAuy "~ 02T [ ( b  ' OAwv 
c --SV- = o r  0 7  - -  Auv @ Gv - -  t )  Wo~ - - T ~  + 

m ( ~ --  sin q~ O~'wy 02wu ) ] 
+ -~- _c~ 2 q~ Ox---- ~ Ox---- 7- + cos ~ b - ~ - ]  j '  ( 4 . 2  ) 

OaT . 02T 
b o/' _ 1 A T e -  A w v =  -~-x2 s l n q ~ - -  % Ot Pr ' Uy, ~ COS 

Uy = Wy = T = 0 f o r  y = •  

S y s t e m  ( 4 . 2 )  h a s  c o n s t a n t  c o e f f i c i e n t s  i f  W0x = 0 o r  b -- m. 

5. Monotonicity Principle. We will show that this principle is satisfied for b = m, 
0 <_ ~ ~ ~/2 or for ~ = ~/2 and any b, m. In system (4.2) we eliminate the function Uy and 
consider normal perturbations 

T(x, g, t) = exp  ((It + iax)O(g), 

wu(x, g, t) = exp  (at -)  iax)~v(g). 

For the amplitude O(y), w(y) we obtain 

Prcbo2LO + o(PrbLO - -  cL20) --  L"O -~. a2(R + ~t cos 2 qo)O = 

= ~(~2 sin ~pw + ia cos (pDw), ( 5 , 1 )  

- - L w  =: a 2 sin q~0 2,_ i s  cos qoD0, 

w = 0 = LO = 0 for y = 4 - t / 2 .  

H e r e  R = Gr P r  i s  t h e  R a y l e i g h  n u m b e r ,  ~ = Gv P r m / b  i s  t h e  v i b r a t i o n  R a y l e i g h  nu~nber ,  w h i c h  
c h a r a c t e r i z e s  c o n v e c t i o n  i n  t h e  p o r o u s  m e d i u m  u n d e r  w e i g h t l e s s n e s s  [ 1 0 ] ,  D =- d / d y ;  L = D 2 - 

a 2.  We w i l l  d e m o n s t r a t e  t h a t  i n  t h e  u n s t a b l e  c a s e  a l l  t h e  i n c r e m e n t s  ~ a r e  r e a l  a n d  t h e  i n -  
s t a b i l i t y  t h r e s h o l d  ( a  r = O) i s  d e t e r m i n e d  by t h e  e q u a t i o n  o = O, w h i c h  e x p r e s s e s  t h e  m o n o -  
t o n i c i t y  p r i n c i p l e .  We m u l t i p l y  t h e  f i r s t  e x p r e s s i o n  o f  Eq .  ( 5 . 1 )  by  O* a n d  t h e  s e c o n d  by  
w*, then integrate each of the equations thus obtained over y from-1/2 to 1/2 (the asterisk 
denotes the complex conjugate). Then 

P r c b I ~  2 + ( P r b l l  + c I 2 ) ~ - ] - I  2 -  (R @ ~ c o s  2 ~ ) a 2 I a - /  ~[4 = 0 ;  ( 5 . 2 )  

1/2 
I~ = j" (a -~ s in  ~,0 + i~ cos cpDO) w* dg. ( 5 . 3 )  

-1/2 

After transforma- 
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TABLE I 

0 
10 
20 
5O 

t00 
200 
800 

t 800 
4 800 
8 000 

t0 000 
t4 500 

100 000 
t 000 000 
2 000 000 

t0 000 000 

2 
~, I 

9.8700 
8,7030 
7,7100 
5,6530 
3,98t0 
2,6840 
t,2220 
0,7870 
0,4680 
0,3590 
0,3200 
0,2643 
0,0990 
0,03t0 
0,0220 
0,0098 

Rm, t 

39,48 
44,32 
48,86 
60;83 
76,93 

10t,48 
120,85 
277,23 
445,65 
572,2i 
638,5t 
766,73 

t996,90 
6293,t0 
8896,00 

19879,00 

2 
a m ,  2 

39,48 
38,25 
37,06 
33,75 
29,tt 
22.6t 
~0,73 
6,74 
3,92 
2.97 
2,64 
2,t7 
0,80 
0,25 
0,t8 
0,08 

Rm, 2 

157,91 
162,87 
t67,76 
t8t,93 
206,05 
243,33 
405,91 
579,43 
914,03 

t166,40 
t298,80 
1554,80 
4014,t0 

~2606,00 
t781t,00 
39778,00 

2 1~t1[2 

32,tl 
3t ,99 
3t ,82 
3t ,32 
3t,t0 
31,08 
31,04 

Rm, i B - I / 2  

6,397 
6,385 
6,367 
6,3t5 
6,293 
6,290 
6,286 

Here 
1/2 

I , =  j" ( I D 0 [ ~ + a 2 [ 0 ] 2 ) d y ;  

1/2 V2 

4 =  I ILOl ey; l lot-@; 
-'i/2 --'i12 
1/2 

I4 = S (~2 sin qDw + i a  cos g'Dw) O* dy; 
-i12 
1/2 

15 = j" (iDwl,~ + ~ l . ~ ' l ~ ) @ .  
-a/2 

From Eq. (5.3) we easily find that 14 = Is. Hence all the integrals appearing in Eq. 
(5.2) are positive. Taking a = o r + ia i and separating real and imaginary components, we 
obtain 

o~(2Prcbllar %- PrbI 1 + cI~) = O, 

Pr  cbI~ (a~ - -  a~)  + (Pr b &  + cI D a, ~, I e - -  (R + ~ cos 2 ~) a2t3 + 9 &  = 0, 
(5.4) 

from which it follows that a i ~ 0 only for o r < 0 and the instability threshold is attained 
at ~ = 0. Moreover, it follows from Eqs. (5.4) that for transverse vibration (~ = ~/2) fil- 
tration convection in a liquid layer under weightlessness is impossible. 

6. Vertical Oscillations. It follows from Sec. 5 that for vertical oscillations the 
monotonicity principle is satisfied for all values of b and m, while for the amplitude O(y) 
we have 

Ls0 - -  R a i L 0  - -  ~ 4 0  ~ 0 ,  0 ~ L0 = L20 = 0 for g = - 4 - t / 2 ,  

which admits the exact solution @(y) = sin ~n(y + 1/2). We write the equation of the neutral 
curve in the plane (R, a) in the form 

= a ~ + ~ n2n2+~" (6.1) 

From this relationship we find that high speed vertical oscillations hinder development 
of convection in a porous medium layer. We will now clarify the behavior of the minimum 
with respect to a of the Rayleigh number Rm(n, ~). The condition for the minimum 8R/as = 0 
leads to the equation 

x 4 §  a +  p~x 2 _  2 f i 3 x _  ~a = 0  (x = a  2, ~ = a 2 n 2 ) ,  

w h i c h  f o r  f i x e d  $ and  ~ h a s  one  p o s i t i v e  r o o t ,  w i t h  t h e  c o n d i t i o n s  x < ~,  8 x / 8 5  > O, a x / a ~  < 
0 being satisfied. Consequently, the critical wave number a m increases with n and decreases 
with ~. For large values of the vibration Reynolds number (~ § ~) we can construct the 
asymptote 
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Rm,,~ = 2 ~ n ~  1/2 q- ~ n  ~ q- OOX-1/2), 
2 ~3rla~t-l/~ O~m,n = , + O(~t-1). 

The calculations shown in Table i indicate that beginning with ~ = l0 s asymptotic values 
are reached. 

7. Absolute Stabilization. We will show that in the case of vertical oscillations the 
state of relative rest may be stable for any temperature gradient. To do this we write ~ = 
R2r [r = a2xv/(2g2~2Kbm -I) is the vibration parameter, which is temperature-independent]. 
Then from Eq. (6.1) we obtain the equation of the relative Rayleigh number 

ro~4R '~ - -  o~2(~2n 2 ~- o ~ ) R  + (~2n~ ~- cr 3 ---- 0,  

the roots of which give the equations of the neutral curves 

R(n,cr -- "n2n2+~2 ( t  ~ ~ f t - - 4 r  (zr2n 2 + ~2)), ( 7 . 1 )  
2r~ 2 

which have the form of "tongues." The base instability level is reached at n = I. Moreover, 
it follows from Eq. (7.1) that for r there exists a limiting value r, = I/(4v2), upon attain- 
ment of which absolute stabilization sets in. This means that the vibration rate must satis- 
fy the condition 

a ~ gL~- t (Kbm-U(2Zv))  '~/2. 

We note that the conclusions made are valid for vibration of sufficiently high frequency, 
allowing use of the averaging method. The author thanks V. I. Yudovich for formulating the 
problem and his valuable remarks. 
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